Maschinenlernen und künstliche Intelligenz (KI) haben zuletzt enorme Fortschritte erzielt. Der damit verbundene Rechenaufwand ist allerdings enorm. Das Training der neuronalen Netze findet in der Regel auf Superrechnern statt. Etwa alle drei Monate verdoppelt sich der zeitliche Trainingsaufwand für maschinell lernende Systeme. Setzt sich der Trend fort, werden sich in absehbarer Zukunft bestimmte Lernaufgaben nicht mehr auf die bekannte Art und Weise mithilfe gängiger Algorithmen und Hardware ökonomisch bewältigen lassen.
Eine vielversprechende Lösung bieten hier neuartige Computerarchitekturen, die in ihrem Aufbau dem Gehirn ähneln. Denn das biologische Vorbild ist technischen Systemen in puncto Leistungsfähigkeit und Effizienz meilenweit voraus. Solche neuromorphen Computer könnten darüber hinaus dazu beitragen, biologische Lerndynamiken besser zu verstehen. Diese haben nur wenig mit den bislang genutzten Algorithmen für das maschinelle Lernen gemein. Nach welchen grundlegenden Prinzipien sie im Detail funktionieren, ist noch weitgehend unbekannt.
Jülicher Forscherinnen und Forscher verfolgen bereits seit einiger Zeit das Ziel, einen solchen neuromorphen Computer zu entwickeln. Dieser soll möglich machen, was auch unter Berücksichtigung zukünftiger technologischer Verbesserungen auf konventionellen Superrechnern nicht erreicht werden kann: Die Simulation neuronaler Netze signifikant beschleunigen. Auf ihrem Weg haben Ingenieurwissenschaftler:innen am Forschungszentrum Jülich nun einen neuen Geschwindigkeitsrekord aufgestellt.